nDST QA for singlemuon analysis

WooJin J. Park Korea University

Contents

- Muon Event Vertex Analysis
 - Vertex dependence
 - Variation within a run
 - Run by Run variation
- Last Gap Muon Analysis
 - Last Gap Muon and Open charm
 - Last gap muon and total momentum
 - Comparison of Run3 and Run4 data
 - Comparison of North and South arm

Z vertex Dependence

Reference Vertex Distribution - Run3 dAu

From Ming's analysis note

Vertex Distribution - Run3 dAu

- 1. Use pro.48 Minbias nDST
- 2. Total 504 runs
- 3. Merge all segments for each run
- 4. cut: abs(BBC_Z_vertex)<26
- 5. Fit with single gaussian function

Example Plot - Run3 dAu

Variation within a run - Run3 dAu

Variation over all runs - Run3 dAu

Vertex Distribution - Run4 AuAu

- 1. Use private repass Minimum Bias nDST samples
- 2. Total 162 runs
- 3. Use first segment for each run
- 4. The number of events per run is 7000
- 5. Fit with single gaussian function

Example Plot - Run4 AuAu

Variation within a run - Run4 AuAu

Run by Run Variation - Run4 AuAu

Last Gap Muon for Open Charm

- Muon from the open charm has large momentum as compared with other muons
- There is every probability that it can be reached to the MuID last gap
- But we cannot measure the number of last gap muons directly Santa Fe Meeting, Jun. 22th 2004

Last Gap Muon for Run3 dAu

Last Gap Muon for Run4 AuAu

Number of Gap3, Gap4 and Last Gap Muon - Run4 AuAu

Last Gap Muon vs Total Momentum

Santa Fe Meeting, Jun. 22th 2004

To Do List from now on

Vertex Analysis

- Need more study on Run4 AuAu data
- Reference vtx distribution: run by run? seg by seg?
- Make reference vtx distribution after production
- Goodrun list based on vertex analysis

Last Gap Muon Analysis

- Need to find good quality cut
- Need to understand the correlation between gap3, gap4, and last gap muon

Summary

Vertex Analysis

- We can separate decay muon and prompt muon by vertex analysis

```
- Run 3 { small variation within a run large variation over the run run by run reference
- Run 4 { large variation within a run small variation over the run need more study!!
```

Last Gap Muon Analysis

- We can separate open charm decay muons and hadron decay muons by last gap muon analysis
- Need more study on Run4 data

BACKUP SLIDES

Estimation of the Number of Last Gap Muon

$$N^{\pi}(i) = N_0 \cdot e^{-\frac{\Delta L_i}{\lambda}}$$

Where, $N^{\pi}(i)$ is the number of gap i pion N_0 is the number of pion at vertex ΔL_i is the total thicknesses of the absorber λ is the slope

Estimation of the Number of Last Gap Muon

We can get N_0 and λ

$$N^{\pi}(5) = N_0 \cdot e^{-\frac{\Delta L_5}{\lambda}}$$

Run Number

